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Abstract

In this paper, a set of quasi-Bernstein polynomials of degree n with one parameter is presented, which is an extension

of the Bernstein polynomials over the triangular domain. Using the presented polynomials as basis functions, we construct a class of shape
adjusting surfaces defined over the triangular domain with a shape parameter, namely, quasi-B-B parametric surfaces. These surfaces share
many properties with the B-B parametric surfaces. In particular, when shape parameters equal 1, they degenerate to be the B-B parametric
surfaces. By changing the value of the shape parameter, we can get different surfaces under the fixed control net.

Keywords: triangular domain, shape parameter, Bézier surfaces.

Bézier patches are one kind of the most wildly
used surfaces in computer-aided geometric design
(CAGD). It basically includes two categories in
terms of different domain under consideration: tensor
product patches over the rectangle domain and B-B
parametric surfaces over the triangular domain. In
practical applications, we usually need to adjust the
shape and position of the Bézier patches. However,
Bézier surface is determined by the Bézier basis func-
tions and control net. Hence, after we adopt a set of
Bézier basis functions to construct a surface, the
shape of this surface can only be changed by adjusting
the control net of it. Fortunately, the introduction of
the rational Bézier surfaces can help us deal with sur-
face modification without changing the control net.
This larger class of Bézier surfaces provides more flex-
ibility in surfaces design than the usual (non-rational)
Bézier surfaces. This advantage of the rational Bézier
surfaces derives from the introducing weights into the
Bézier surfaces. But the calculations of derivative and
integral are complicated due to the fractional expres-
sions. It is also difficult to choose appropriate weight
values to obtain the desired shape“].

Recently, a curve shape modification by virtue of
controlling shape parameters becomes an interesting
topic and some progress has been made. The basic
idea is that adding flexibility to the basis functions,
namely, introducing a parameter into the basis func-

tions. Then, the curves represented by these basis
functions can have different shapes by varying shape
parameter values. Several basis functions with a shape
parameter have been constructed through different
approaches. For example, in [2], polynomial blend-
ing functions of degree 3 were constructed by using
polynomials of degree 4, then the redundant degree of
freedom in the coefficients was used as a shape param-

eter. And C-Bézier curve was proposed by Chen and

Wang™!. In their paper, trigonometric functions
g p

were used as initial basis functions, then the general
basis functions then could be obtained by a recurrence
formula. The upper bound of the parametric interval
of these trigonometric functions was actually a shape
parameter. In terms of constructing basis functions
by an integration approach, Wang and Wang pro-
posed a series of splines such as uniform B-Spline/hy-

trigonometric polynomial B-
[4—8]

perbolic polynomial,
Spline and Bézier curve with a shape parameter
The curves constructed by these basis functions take
different shapes with invariant control points by vary-
ing values of the shape parameters. By tensor product
method, the surfaces with an adjustable shape over
the rectangle domain become an easy extension of the
curves with the adjustable shape mentioned above.

Nevertheless, the B-B parametric surface over
the triangular domain is not a tensor product patch
exactly. Hence, we cannot get the B-B parametric
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surface with an adjustable shape through the method
of tensor product. B-B parametric surfaces are suit-
able for geometric modeling based on irregular and
scattered data. By the use of surfaces constructed over
non-degenerate triangular parameter domains, we can
avoid degeneracy of rectangular patches, and triangu-
lar patches can also be used as triangular structure ele-
ments which have been widely used in the finite ele-
ment analysis and can be constructed in arbitrary
topology grids as well*). Although triangular Bézier
surfaces are of importance in CAGD, we lack meth-
ods to construct triangular patches with an adjustable
shape.

In this study, we attempted to construct a set of
basis functions with a parameter over the triangular
domain. Based on these basis functions, a kind of
surfaces with an adjustable shape over the triangular
domain was obtained. These surfaces share many
properties with the B-B parametric surface over the
triangular domain, such as affine invariance, convex
hull property, corner point interpolation, boundary
curves and corner point tangent plane. Owning to the
shape parameter, we got one kind of more flexible
surfaces under the fixed control net, and obtained tri-
angular patches of different shapes by varying param-
eters values. In particular, these surfaces degenerate
to be B-B parametric surfaces over the triangular do-
main when the parameter values are equal to 1.

1 Preliminary

Definition 1. Given a domain triangle T with
vertices T:’ Tz’ T3, every point P in the interior of

T can be expressed as
P =uT, + oT, + wTj,
where the coefficients are determined by the areas of
subtriangles of domain triangle
(u,v,w) = (APT2T3/AT1T2T3,
ATlPTS/ATlT2T3,
ATlTZP/ATszTa)'
Here, & ABC denotes the area of the triangle with
vertices A, B, C.

We call these coefficients the barycentric coordi-
nates of P with respect to domain triangle

T1T2T3[10](see Fig.1(a)). Also we have the con-

straints u, v, w=20,u + v+ w=1.

Definition 2. Given (n + 1){(n + 2)/2 vectors

3. L. .
T, ; ke% , i,j,k=0,i+j+k=n, and a domain
triangle T and a point P in the interior of it with
barycentric coordinates («, v, w), we call

T (u, v, w) = E B:‘j,k(u,v,w)Ti’j,k,

itjtk=n
(u,v,w)€E T, u,v,w=0,
utv+w=1 (1)

the Bernstein-Bézier parametric surface of degree n
over the domain triangle T (abbreviated as B-B para-
metric surface), where

! i j &

n n. t ]
Bl,'j'k(u,'u,w) = _i!j!k! uvw ,
i+tj+k=n, u,v,w=0 u+v+w=1
is called Bernstein polynomials of degree n, T are

ik
called the control points of surface (1); the surface

2,
which is composed of n triangles Ti+1,j,kTi,j+1,k

. k+1(i +j+k=mn—1) is referred to as the Bézier
control net or B net of surface (1) (see Fig. 1(b)).

T,

(a)

Tmo Tfm
(b)

Fig. 1. Domain triangle and control net. (a) Domain triangle, T

with vertices T, T,, T3 (b) control net with control points T, e

Bernstein polynomials have the properties of non-
negativity, symmetry, normalization, roots, order of
zeros, linear independence; and B-B parametric sur-
faces have the properties of affine invariance, convex
hull property, corner point interpolation, boundary
curve and corner point tangent plane.

2  Quasi-Bernstein polynomials with a pa-.

rameter

Definition 3. The quasi-Bernstein polynomials of



354

www . tandf. co.

uk/journals Progress in Natural Science Vol.17 No.3 2007

degree n with a parameter A associated with a domain
n+1

triangle T are defined as:

; i+ k) ] S
. Y 'k|u7/ [i+1 P w+Ailv+w) 0,: >j+1
B:j,k(u’v’w) = ori >j =k >0
; +1 k) (n+1_i+z') ] o
oy 'k' v’w[‘—“i+1 1+1A (u +v) + P k+1:\w i =j>k+1.
In addition,
ifnisoddandk = 0,7 = j +1
N 7’1! i k
Bi.]‘,o = l’!jf u'UJ \
n+1 l )
[i+1 z+1A u+'v+A'w:|
ifn=3rr‘l—1, mEN, i=j=kFk+1 02,0 0,02
i~ _ n ij ok X1,
ik = g1 YW $i
2L+1) n+k J (a)
[:n—k+2 n—k+2 (u+0)+wjs
fn=3m, mEN,i=j=k=m
o7 _ n! m m(Tl+1_ m )
Bi'j'k_m‘m'm'uvw mtl m+1’
withu,v,w=>=0, u+tv+w=1,02A<1, i+

j+ %k =n(n=>2). The subscripts of these polynomi-
als satisfy 1 = j = k. If we display the subscripts of
the polynomials in the triangular array, the subscripts
satisfying ¢ == j == k will be located in the dashed area
and its boundary (see Fig. 2(b)). The rest of the
polynomials are defined symmetrically: when j = i >

k, B! (u,v,w)=Ej':i,k('u,u,w);whenk>z

i,j. k

>j,B; (u,v,w) = By, (w,u,v); whenk >

j=i ~rlz,‘,(u,'v,'w)Z :,j,i('w,v,u);whenj
=iz=k, B,J‘k(u v, w) = ~j i 1(v, u, w); when
j>k>i,Bi'j,k(u,v,w) = l~3,k (v, w,u).

These functions share many properties with the
Bernstein polynomials over the triangular domain,
such as:

s

Property 1 (Non-negativity) . Bl’ i
+ R

n.

Proof. This property can be simply derived form
Definition 3.

Property 2 (Symmetry). Quasi-Bernstein poly-
nomials are symmetric with respect to parameters u,
UV, W:

Fig. 2. Triangular array of the subscripts of quasi-Bernstein poly-
nomials of degree n (the arrows denote the increasing direction of
the variables beside them). (a) Triangular array of the subscripts
when 7 =2; (b) the position of the subscripts which satisfy i >>j >
% in the triangular array when # is even.

B’

i, Bj':i,k(v’u’w)

HLu, v, w) =

EJ pilv,w,u)

= z’k](u w,v) =

B (w,v,u)
0, u+v+w

B,:,,-,j(w, w,v)

for (u,v, w) €T, u, v, w= 1,

i+j+tk =

Proof. This property can be simply derived from
Definition 3.

2 B,

itjthk==n

Property 3 (Normalization). = 1.
Proof. Applying Definition 3, and when i = j

=k, in case £ = 0, we have
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ifi>j+1,
5N n+l n
B == A)Biil,j,k +AB; ;45

ifi=5+1,
O _ n+1 l n+l
Bijw = (=2 Bl + 5B )+ 2B, 4
if: =7y,
SN _ nt+l n+1 . n+l
Biix =(L=2)(Biy et Bl + Bl et)
+ AB:',j'k.

In case £ % 0, we have
ifi >j=k,
B, = (1= Q)Bill,, +AB.,
ifi=j>k+1lori =j =k,

] _ n+1 n+l n+l
Bl x == 2)(Bii e + Bl jere + B ait)

+AB] 43
ifi=57=%F+1,
oo n+l n+l 1 n+1
B, == '\)(Bz:l,j,k + Bz',+j+1,k + gBi:Lj,k+1
+AB] ;-
Denoting
A= Z Bi':j,k’
i, j=2k
itjthk=n
C=0-2) 2 Bijg+i 2 B e
1LI=K ik
I+J+K=n+1 itjtk=n
and following the symmetry, we obtain that when
n=3m-1, m &€ N,
A=C-30-0B7) .

Similarly, when
A=C+(1-21)B""

n =3m, m,m,m+l;

when

n=3m+1, A=C.
Following Property 2 and the property of normaliza-
tion of the Bernstein polynomials, we have

2 BNin,j.lz: (1-2) Z BanJI,K
itjtk=n I+J+K=n+1
+2 2 B,
itjtk=n
=1-A+A=1.

Property 4 (Degeneracy). When A = 1, the
quasi-Bernstein polynomials degenerate to be Bern-
stein polynomials over the triangular domain.

Property 5 (Roots). The quasi-Bernstein poly-

nomials have roots in
[01]1x[01]x[01]:
=~ 1 1 =mn
Bi’j’k(l’o’o) {0 other’
1 7 =mn
0 other’
1 k=n
0 other

B!, .(0,1,0) = |
B,'r:j,k(O’Osl) = {

Property 6 (Multiplicity of zeros).
Incasei +j + & =n,ifv#0, w+*0;

if A #0, (0, v, w) is i-fold zero of E::j'k;

ifA =0, (0,v,w)is i+ 1-fold zero oféi':]—'k(k
=0,i>5+1;7=0, i >k+1; #0,i>j>=
k3 j %0, i > k = j) and i-fold zero of the rest
quasi-Bernstein polynomials.

In particular,

if2#0, (0,0,1)is (i + ;) -fold zeroofgi':j'k;

ifA =0, (0,0,1) is (i + j + 1) -fold zero of

Bl i, j =k, i#j;j=0,i=2k+1;j#0, i
>k>j;i=0,j>k+1;i50,j>k>i), and
(i + j) -fold zero of the rest quasi-Bernstein polyno-
mials.

We can obtain the multiplicity of zero (u,0, w)
(u #0,w#0), (u,v,0) (u#20,v#0), (1,0,
0), (0,1,0) of the quasi-Bernstein polynomials re-
spectively by applying the property of symmetry simi-
larly.

Property 7 (Linear independence).
D a4 Bl =0 iff a,=0,
itjtk=n
1+j+k=n.

Proof. The sufficiency is obvious. We prove the
necessity as follows: If > a; i Bl e =0, a; ;4
itjtk=n
€ R, i +j + k = n, like the proof of the property
of normalization, we can rewrite the quasi-Bernstein
polynomials as the combination of Bernstein polyno-

mials of degree n and n + 1, hence we have

Z ai,j,kBZj,kz(l_A) 2 T’}TJI,KB"IT]I,K

itj+tk=n I+J+K=n
n
+A Z ai,j,kBi,j,k =0,
itj+tk=n

where
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n+1 _ i, j,k
Tik = 2 51,1, K%i,5, k0
itj+k=n
ik 11
ke fon L )

Because 1 — A, A are linearly independent, we have

Z B} ; sai.j.» = 0. Applying the property of lin-
itj+k=n
ear independence of the Bernstein polynomials, we

havea; ;, = 0, i + j + k = n, hence, the quasi-

Bernstein polynomials are linearly independent,

which form a basis.
3 Quasi-B-B parametric surface

Definition 4. Given (n + 1)(n + 2)/2 vectors
T{_j’kES‘f:i, i,j,k=20,7+j+k=n, adomain trian-
gle T and a point P in the interior of it with barycen-
tric coordinate (u, v, w), we call

T (u,v,w) = 2 B! y(u,v,w)T,
itjthk=n
(u,v,w) €T, u,v,w=0,

utov+w=1
the quasi-Bernstein-Bézier parameter surfaces of de-
gree n over the domain triangle T with a shape pa-
rameter A, and abbreviate it as quasi-B-B parametric
surfaces. These surfaces have the following proper-
ties:

Property 8 ( Affine invariant and geometric in-
variant) .

The shape of the surface is only dependent of the
control points and independent of the underlying co-
ordinate system. If the surface is transformed by an
affine transformation, we could just as well apply the
transformation to the control net and would end up
with the same surface.

Proof. Because the surface is an affine combina-
tion of the control points, it is invariant under affine
maps[g’ “].

Property 9 (Convex hull property). The surface
is in the convex hull of the control net.

Proof. This follows from properties of the non-
negativity and normalization of the quasi-Bernstein
polynomials.

Property 10 (Corner point interpolation). The
three corner points of the surface interpolate the cor-
responding corner points of the control net respective-

ly.

Proof. Applying Property 5, we have:
7(1,0,00= >, B/, ,(1,0,0)T,

i+j+k=n

E:,o.o(li 0,0) T, 00=T,00-

I

Similarly
T"(0,1,0) = Ty, 0
which completes the proof.

77(0,0,1) = Ty, .

Property 11 (Corner point tangent plane). The
points
IT, 0.0s Tn-1,1,00 Tn-1,0,1! determine the tangent

plane at T, ¢ o,

{Tg 200 Ty, n-1.0» To,n-1,1| determine the tangent
plane at Tg , ¢,

{T9.0,ns T1,0,n-1» To,1,n-1! determine the tangent

plane at Ty ,,-

Proof. We obtain the tangent plane at T, 0.0
firstly.

Recall that
Tn(u9 U, w) = :i‘n(u’ 'Usl - u - 'l)),
from Property 6, we have

T (u, v, w)

du (1,0,0)
aBN;"O’O(u,v,l ~u-—v)
B Ju 4(1.0.0) 0.0
8B~,:'_1&1(u,v,1—u—v) T
ou (Lo "Ll

=(n+1-AXT, 00~ T, 1.01)

T (u, v, w)
dv (1,0,0)
= (n+1=2)(T, 110~ Tyq01)-
It means that the tangent plane at T, ,  is just the
plane through the three points T, oo, T, 1 g0
T, 1,0,1- We can get the tangent plane at the rest of

the corner points similarly.

Property 12 ( Boundary curves). Boundary

curves are Bézier curves with an adjustable shape.

Proof. We prove that when w = 0, the surface
reduces to a Bézier curve with a shape parameter.

From Definition 4, we have:

fw=0, k#0thenv =1-u,B", (u,v,

2 Js
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T (u,v,0)= Z E:,‘,o(u’v’o)’ri,,’.o

itj=n

n+ 1! g T+l
= u (1-u)'T

I+J=n+1 I!]! Iy
71! i Jn

+mz:n i!j!u (lﬂu)Ti_j, (2)

where

TTJI =(1-2) Z t;'.]ﬂ‘i.j.o’

itjtk=n
gt e o1, 1),
T:"j = AT:’.]’.O’
The first item of the right part of (2)is actually a

i+j5 =n.

Bézier curve of degree n + 1 with control points T +JI .
The second item is also a Bézier curve of degree n
with control points T ;» which can be represented as
a Bézier curve of degree n + 1 after degree arising. By
collecting it to the first item, we get a Bézier curve of
degree n + 1 with a parameter A. The other boundary
curves can be obtained analogously.

4 An example

An example of a surface of degree 3 is given in
Fig.3. Fig. 3(a) shows the figure of the surface
when the parameter’s value is equal to 1 and Fig. 3
(b) shows the figure when A is equal to 0. The fig-
ures indicate that we can get surfaces of different
shape by choosing different values of the shape pa-
rameter under the fixed control net.

Fig. 3. The test surface when A is equal to 1 (a) and 0 (b) re-
spectively.

5 Conclusion

Here we propose a set of polynomial functions
defined over the triangular domain with a parameter
A. They degenerate to be Bernstein polynomials de-
fined over the triangular domain when A is equal to 1.
These functions have some excellent properties similar
to the Bernstein polynomials, such as non-negativity,
independence,
roots, multiplicity of zeros and so on. Based on this
set of basis functions, we have constructed a kind of
surfaces with an adjustable shape under a fixed con-
trol net. These surfaces share many properties with

symmetry, normalization, linear

the B-B parametric surface, such as affine invariance,
convex hull property, corner-point interpolation,
boundary curves and corner point tangent plane. Par-
ticularly, they degenerate be to B-B parametric sur-
faces over the triangular domain when A is equal tol.
Since the important role of triangular patches in the
shape modeling and the lack of the method of con-
structing surfaces with an adjustable shape over the
triangular domain through adjusting shape parame-
ters, the approach we proposed will make some con-
tribution to practical applications.
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